Bembel
integrate2.hpp
1 // This file is part of Bembel, the higher order C++ boundary element library.
2 //
3 // Copyright (C) 2022 see <http://www.bembel.eu>
4 //
5 // It was written as part of a cooperation of J. Doelz, H. Harbrecht, S. Kurz,
6 // M. Multerer, S. Schoeps, and F. Wolf at Technische Universitaet Darmstadt,
7 // Universitaet Basel, and Universita della Svizzera italiana, Lugano. This
8 // source code is subject to the GNU General Public License version 3 and
9 // provided WITHOUT ANY WARRANTY, see <http://www.bembel.eu> for further
10 // information.
11 #ifndef BEMBEL_SRC_DUFFYTRICK_INTEGRATE2_HPP_
12 #define BEMBEL_SRC_DUFFYTRICK_INTEGRATE2_HPP_
13 
14 namespace Bembel {
15 namespace DuffyTrick {
27 template <typename Derived, class T>
28 void integrate2(const LinearOperatorBase<Derived> &LinOp, const T &super_space,
29  const ElementTreeNode &e1, int rot1, const ElementTreeNode &e2,
30  int rot2, const ElementSurfacePoints &ffield_qnodes1,
31  const ElementSurfacePoints &ffield_qnodes2, const Cubature &Q,
32  Eigen::Matrix<typename LinearOperatorTraits<Derived>::Scalar,
33  Eigen::Dynamic, Eigen::Dynamic> *intval) {
34  intval->setZero();
35  double h = e1.get_h();
36  double t1 = 0;
37  double t2 = 0;
38  double t3 = 0;
39  double t4 = 0;
40  Eigen::Matrix<double, 2, 8> pts;
41  SurfacePoint qp1, qp2;
42  // llc of the element wrt [0,1]^2
43  for (auto i = 0; i < Q.w_.size(); ++i) {
44  double w = h * h * Q.w_(i) * Q.xi_(0, i) * (1 - Q.xi_(0, i)) *
45  (1 - Q.xi_(0, i) * Q.xi_(1, i));
46  for (auto j = 0; j < Q.w_.size(); ++j) {
47  t1 = Q.xi_(0, j) * (1 - Q.xi_(0, i));
48  t2 = Q.xi_(1, j) * (1 - Q.xi_(0, i) * Q.xi_(1, i));
49  t3 = Q.xi_(0, j) * (1 - Q.xi_(0, i)) + Q.xi_(0, i);
50  t4 = Q.xi_(1, j) * (1 - Q.xi_(0, i) * Q.xi_(1, i)) +
51  Q.xi_(0, i) * Q.xi_(1, i);
52  pts << t1, t3, t1, t3, t2, t4, t2, t4, t2, t4, t4, t2, t1, t3, t3, t1;
53  for (auto k = 0; k < 4; ++k) {
54  super_space.map2surface(e1, pts.col(2 * k), w, &qp1);
55  super_space.map2surface(e1, pts.col(2 * k + 1), Q.w_(j), &qp2);
56  LinOp.evaluateIntegrand(super_space, qp1, qp2, intval);
57  LinOp.evaluateIntegrand(super_space, qp2, qp1, intval);
58  }
59  }
60  }
61  BEMBEL_UNUSED_(e2);
62  BEMBEL_UNUSED_(rot1);
63  BEMBEL_UNUSED_(rot2);
64  BEMBEL_UNUSED_(ffield_qnodes1);
65  BEMBEL_UNUSED_(ffield_qnodes2);
66  return;
67 }
68 } // namespace DuffyTrick
69 } // namespace Bembel
70 
71 #endif // BEMBEL_SRC_DUFFYTRICK_INTEGRATE2_HPP_
The ElementTreeNode corresponds to an element in the element tree.
double get_h() const
getter
void integrate2(const LinearOperatorBase< Derived > &LinOp, const T &super_space, const ElementTreeNode &e1, int rot1, const ElementTreeNode &e2, int rot2, const ElementSurfacePoints &ffield_qnodes1, const ElementSurfacePoints &ffield_qnodes2, const Cubature &Q, Eigen::Matrix< typename LinearOperatorTraits< Derived >::Scalar, Eigen::Dynamic, Eigen::Dynamic > *intval)
quadrature routine for identical elements
Definition: integrate2.hpp:28
Eigen::Matrix< double, 12, 1 > SurfacePoint
typedef of SurfacePoint
std::vector< SurfacePoint, Eigen::aligned_allocator< SurfacePoint > > ElementSurfacePoints
typedef std::vector<SurfacePoint> with aligned allocator of Eigen for compatibility with older compil...
Routines for the evalutation of pointwise errors.
Definition: AnsatzSpace.hpp:14
linear operator base class. this serves as a common interface for existing linear operators.
struct containing specifications on the linear operator has to be specialized or derived for any part...