Bembel
SingleLayerPotential.hpp
1 // This file is part of Bembel, the higher order C++ boundary element library.
2 //
3 // Copyright (C) 2022 see <http://www.bembel.eu>
4 //
5 // It was written as part of a cooperation of J. Doelz, H. Harbrecht, S. Kurz,
6 // M. Multerer, S. Schoeps, and F. Wolf at Technische Universitaet Darmstadt,
7 // Universitaet Basel, and Universita della Svizzera italiana, Lugano. This
8 // source code is subject to the GNU General Public License version 3 and
9 // provided WITHOUT ANY WARRANTY, see <http://www.bembel.eu> for further
10 // information.
11 #ifndef BEMBEL_SRC_LAPLACE_SINGLELAYERPOTENTIAL_HPP_
12 #define BEMBEL_SRC_LAPLACE_SINGLELAYERPOTENTIAL_HPP_
13 
14 namespace Bembel {
15 // forward declaration of class LaplaceSingleLayerPotential in order to define
16 // traits
17 template <typename LinOp>
18 class LaplaceSingleLayerPotential;
22 template <typename LinOp>
24  typedef Eigen::VectorXd::Scalar Scalar;
25  static constexpr int OutputSpaceDimension = 1;
26 };
27 
33 template <typename LinOp>
35  : public PotentialBase<LaplaceSingleLayerPotential<LinOp>, LinOp> {
36  // implementation of the kernel evaluation, which may be based on the
37  // information available from the superSpace
38  public:
40  Eigen::Matrix<
41  typename PotentialReturnScalar<
42  typename LinearOperatorTraits<LinOp>::Scalar, double>::Scalar,
43  1, 1>
44  evaluateIntegrand_impl(const FunctionEvaluator<LinOp> &fun_ev,
45  const ElementTreeNode &element,
46  const Eigen::Vector3d &point,
47  const SurfacePoint &p) const {
48  // get evaluation points on unit square
49  auto s = p.segment<2>(0);
50 
51  // get quadrature weights
52  auto ws = p(2);
53 
54  // get points on geometry and tangential derivatives
55  auto x_f = p.segment<3>(3);
56  auto x_f_dx = p.segment<3>(6);
57  auto x_f_dy = p.segment<3>(9);
58 
59  // compute surface measures from tangential derivatives
60  auto x_kappa = x_f_dx.cross(x_f_dy).norm();
61 
62  // evaluate kernel
63  auto kernel = evaluateKernel(point, x_f);
64 
65  // assemble Galerkin solution
66  auto cauchy_value = fun_ev.evaluate(element, p);
67 
68  // integrand without basis functions
69  auto integrand = kernel * cauchy_value * x_kappa * ws;
70 
71  return integrand;
72  }
73 
77  double evaluateKernel(const Eigen::Vector3d &x,
78  const Eigen::Vector3d &y) const {
79  return 1. / 4. / BEMBEL_PI / (x - y).norm();
80  }
81 };
82 
83 } // namespace Bembel
84 #endif // BEMBEL_SRC_LAPLACE_SINGLELAYERPOTENTIAL_HPP_
The ElementTreeNode corresponds to an element in the element tree.
This class implements the specification of the integration for the single layer potential for Laplace...
double evaluateKernel(const Eigen::Vector3d &x, const Eigen::Vector3d &y) const
Fundamental solution of Laplace problem.
Eigen::Matrix< double, 12, 1 > SurfacePoint
typedef of SurfacePoint
Routines for the evalutation of pointwise errors.
Definition: AnsatzSpace.hpp:14
struct containing specifications on the linear operator has to be specialized or derived for any part...
functional base class. this serves as a common interface for existing functionals.
Definition: Potential.hpp:81
Base case for specifying the return type of the potential.
Definition: Potential.hpp:36
struct containing specifications on the functional has to be specialized or derived for any particula...
Definition: Potential.hpp:28