Bembel
SingleLayerPotential.hpp
1 // This file is part of Bembel, the higher order C++ boundary element library.
2 //
3 // Copyright (C) 2022 see <http://www.bembel.eu>
4 //
5 // It was written as part of a cooperation of J. Doelz, H. Harbrecht, S. Kurz,
6 // M. Multerer, S. Schoeps, and F. Wolf at Technische Universitaet Darmstadt,
7 // Universitaet Basel, and Universita della Svizzera italiana, Lugano. This
8 // source code is subject to the GNU General Public License version 3 and
9 // provided WITHOUT ANY WARRANTY, see <http://www.bembel.eu> for further
10 // information.
11 
12 #ifndef BEMBEL_SRC_HOMOGENISEDLAPLACE_SINGLELAYERPOTENTIAL_HPP_
13 #define BEMBEL_SRC_HOMOGENISEDLAPLACE_SINGLELAYERPOTENTIAL_HPP_
14 
15 namespace Bembel {
16 // forward declaration of class HomogenisedLaplaceSingleLayerPotential
17 // in order to define traits
18 template<typename LinOp>
19 class HomogenisedLaplaceSingleLayerPotential;
20 
24 template<typename LinOp>
26  typedef Eigen::VectorXd::Scalar Scalar;
27  static constexpr int OutputSpaceDimension = 1;
28 };
29 
35 template<typename LinOp>
37  HomogenisedLaplaceSingleLayerPotential<LinOp>, LinOp> {
38  // implementation of the kernel evaluation, which may be based on the
39  // information available from the superSpace
40 
41  public:
47  this->deg = getDegree(
49  this->cs = getCoefficients(
51  }
52  Eigen::Matrix<
53  typename PotentialReturnScalar<
55  double>::Scalar, 1, 1> evaluateIntegrand_impl(
56  const FunctionEvaluator<LinOp> &fun_ev, const ElementTreeNode &element,
57  const Eigen::Vector3d &point, const SurfacePoint &p) const {
58  // get evaluation points on unit square
59  auto s = p.segment < 2 > (0);
60 
61  // get quadrature weights
62  auto ws = p(2);
63 
64  // get points on geometry and tangential derivatives
65  auto x_f = p.segment < 3 > (3);
66  auto x_f_dx = p.segment < 3 > (6);
67  auto x_f_dy = p.segment < 3 > (9);
68 
69  // compute surface measures from tangential derivatives
70  auto x_kappa = x_f_dx.cross(x_f_dy).norm();
71 
72  // evaluate kernel
73  auto kernel = evaluateKernel(point, x_f);
74 
75  // assemble Galerkin solution
76  auto cauchy_value = fun_ev.evaluate(element, p);
77 
78  // integrand without basis functions
79  auto integrand = kernel * cauchy_value * x_kappa * ws;
80 
81  return integrand;
82  }
83 
87  double evaluateKernel(const Eigen::Vector3d &x,
88  const Eigen::Vector3d &y) const {
89  return k_mod(x - y)
90  + evaluate_solid_sphericals(x - y, this->cs, this->deg, false);
91  }
92 
93  private:
95  unsigned int deg;
97  Eigen::VectorXd cs;
98 };
99 
100 } // namespace Bembel
101 
102 #endif // BEMBEL_SRC_HOMOGENISEDLAPLACE_SINGLELAYERPOTENTIAL_HPP_
The ElementTreeNode corresponds to an element in the element tree.
static double getPrecision()
returns the precision of the periodicity of the kernel
This class implements the specification of the integration for the single layer potential for the hom...
double evaluateKernel(const Eigen::Vector3d &x, const Eigen::Vector3d &y) const
Fundamental solution of the homogenised Laplace problem.
HomogenisedLaplaceSingleLayerPotential()
Constructs an object initialising the coefficients and the degree via the static variable Homogenised...
Eigen::Matrix< double, 12, 1 > SurfacePoint
typedef of SurfacePoint
Routines for the evalutation of pointwise errors.
Definition: AnsatzSpace.hpp:14
Eigen::VectorXd getCoefficients(double precision)
Calculates the coefficients for the solid harmonics expansion of the periodic kernel .
unsigned int getDegree(double precision)
Returns the degree of the sphericals expansion given a precision. Can be extended,...
double evaluate_solid_sphericals(Eigen::Vector3d x, Eigen::VectorXd cs, unsigned int deg, bool grad)
Evaluates the series for real coefficients cs if grad is false, and for real coefficients cs if gra...
Definition: Sphericals.hpp:128
double k_mod(Eigen::Vector3d in)
Returns the modified kernel .
struct containing specifications on the linear operator has to be specialized or derived for any part...
functional base class. this serves as a common interface for existing functionals.
Definition: Potential.hpp:81
Base case for specifying the return type of the potential.
Definition: Potential.hpp:36
struct containing specifications on the functional has to be specialized or derived for any particula...
Definition: Potential.hpp:28