Cortes Garcia, Idoia ; Egger, Herbert ; Shashkov, Vsevolod (2022): MONA – A magnetic oriented nodal analysis for electric circuits. In: International Journal of Circuit Theory and Applications, ISSN: 0098-9886, DOI: 10.1002/cta.3301, ARXIV: 2108.05143, online first. [Article]
Huber, Morten ; Fuhrländer, Mona ; Schöps, Sebastian (2022): Multi-Objective Yield Optimization for Electrical Machines using Gaussian Processes to Learn Faulty Designs. In: IEEE Transactions on Industry Applications, 59, (2), pp. 1340–1350, ISSN: 0093-9994, DOI: 10.1109/TIA.2022.3211250, ARXIV: 2204.04986. [Article]
Ion, Ion Gabriel ; Loukrezis, Dimitrios ; De Gersem, Herbert (2022): Tensor train based isogeometric analysis for PDE approximation on parameter dependent geometries. In: Computer Methods in Applied Mechanics and Engineering, 401, (B), pp. 115593, ISSN: 0045-7825, DOI: 10.1016/j.cma.2022.115593, ARXIV: 2204.02843. [Article]
Loukrezis, Dimitrios ; De Gersem, Herbert (2022): Power module heat sink design optimization with data-driven polynomial chaos surrogate models. In: e-Prime – Advances in Electrical Engineering, Electronics and Energy, 2, pp. 100059, ISSN: 2772-6711, DOI: 10.1016/j.prime.2022.100059. [Article]
Marussig, Benjamin ; Reif, Ulrich (2022): Surface patches with rounded corners. In: Computer Aided Geometric Design, 97, pp. 102134, ISSN: 0167-8396, DOI: 10.1016/j.cagd.2022.102134. [Article]
Marussig, Benjamin (2022): Fast formation and assembly for spline-based 3D fictitious domain methods. In: Proceedings in Applied Mathematics and Mechanics, volume 22. Wiley. DOI: 10.1002/pamm.202200165. [In Proceedings]
Merkel, Melina ; Kapidani, Bernard ; Schöps, Sebastian ; Vázquez, Rafael (2022): Torque Computation with the Isogeometric Mortar Method for the Simulation of Electric Machines. In: IEEE Transactions on Magnetics, ISSN: 0018-9464, DOI: 10.1109/TMAG.2022.3186247, ARXIV: 2202.05771. [Article]
von Tresckow, Moritz ; Kurz, Stefan ; De Gersem, Herbert ; Loukrezis, Dimitrios (2022): A neural solver for variational problems on CAD geometries with application to electric machine simulation. In: Journal of Machine Learning for Modeling and Computing, 3, (1), pp. 49–75, ISSN: 2689-3967, DOI: 10.1615/JMachLearnModelComput.2022041753, ARXIV: 2111.09005. [Article]