GCC Code Coverage Report


Directory: Bembel/src/
File: Spline/Localize.hpp
Date: 2024-12-18 07:36:36
Exec Total Coverage
Lines: 16 16 100.0%
Functions: 3 3 100.0%
Branches: 10 10 100.0%

Line Branch Exec Source
1 // This file is part of Bembel, the higher order C++ boundary element library.
2 //
3 // Copyright (C) 2022 see <http://www.bembel.eu>
4 //
5 // It was written as part of a cooperation of J. Doelz, H. Harbrecht, S. Kurz,
6 // M. Multerer, S. Schoeps, and F. Wolf at Technische Universitaet Darmstadt,
7 // Universitaet Basel, and Universita della Svizzera italiana, Lugano. This
8 // source code is subject to the GNU General Public License version 3 and
9 // provided WITHOUT ANY WARRANTY, see <http://www.bembel.eu> for further
10 // information.
11 #ifndef BEMBEL_SRC_SPLINE_LOCALIZE_HPP_
12 #define BEMBEL_SRC_SPLINE_LOCALIZE_HPP_
13
14 namespace Bembel {
15
16 /**
17 * \ingroup Spline
18 * \brief The Spl namespace is the backend for basis functions and B-Spline
19 * computations, and should not be used by the user in a boundary element code.
20 */
21 namespace Spl {
22 // At first the a==0 and b==1 seems insane. However, this is the case quite
23 // often and actually shaves off a couple of % of runtime, since the comparison
24 // is cheaper than a division.
25 199812368 constexpr inline double Rescale(double x, double a, double b) noexcept {
26
4/4
✓ Branch 0 taken 199812240 times.
✓ Branch 1 taken 128 times.
✓ Branch 2 taken 128 times.
✓ Branch 3 taken 199812112 times.
199812368 return (a == 0 && b == 1) ? x : (x - a) / (b - a);
27 }
28
29 // We use equidistant points for our interpolation problems. This is not
30 // optimal, but works sufficiently well.
31 261 inline std::vector<double> MakeInterpolationMask(
32 int polynomial_degree) noexcept {
33 261 std::vector<double> out(polynomial_degree);
34 261 const double h = 1. / (polynomial_degree + 1);
35
2/2
✓ Branch 0 taken 872 times.
✓ Branch 1 taken 261 times.
1133 for (int i = 0; i < polynomial_degree; i++) {
36 872 out[i] = ((i + 1) * h);
37 }
38 261 return out;
39 }
40
41 /**
42 * \ingroup Spline
43 * \brief Creates a T-vector of equidistant itnerpolation points for a given
44 * knot vector without any repetitions.
45 **/
46 template <typename T>
47 2 inline std::vector<T> MakeInterpolationPoints(
48 const std::vector<T> &uniq, const std::vector<T> &mask) noexcept {
49 2 const int size = uniq.size();
50 2 std::vector<T> out;
51
52 2 out.reserve((size - 1) * mask.size());
53
54
2/2
✓ Branch 0 taken 4 times.
✓ Branch 1 taken 2 times.
6 for (int i = 0; i < size - 1; i++) {
55
2/2
✓ Branch 4 taken 8 times.
✓ Branch 5 taken 4 times.
12 for (auto m : mask) {
56 8 out.push_back(uniq[i] + m * (uniq[i + 1] - uniq[i]));
57 }
58 }
59 2 return out;
60 }
61
62 /**
63 * \ingroup Spline
64 * \brief returns the coefficients to represent a function in the Bernstein
65 * basis on [0,1].
66 **/
67 inline Eigen::Matrix<double, -1, -1> GetInterpolationMatrix(
68 int polynomial_degree, const std::vector<double> &mask) {
69 Eigen::Matrix<double, -1, -1> interpolationMatrix(polynomial_degree + 1,
70 polynomial_degree + 1);
71
72 double val[Constants::MaxP + 1];
73 for (int j = 0; j < polynomial_degree + 1; j++) {
74 Bembel::Basis::ShapeFunctionHandler::evalBasis(polynomial_degree, val,
75 mask[j]);
76 for (int i = 0; i < polynomial_degree + 1; i++)
77 interpolationMatrix(j, i) = val[i];
78 }
79
80 return interpolationMatrix.inverse();
81 }
82
83 /**
84 * \ingroup Spline
85 * \brief this solves a generic interpolation problem.
86 **/
87 template <typename T>
88 inline void GetCoefficients(const int incr, const std::vector<double> &mask,
89 const std::vector<T> &values, T *coefs) {
90 int polynomial_degree = mask.size() - 1;
91
92 Eigen::Matrix<double, -1, -1> im =
93 GetInterpolationMatrix(polynomial_degree, mask);
94
95 Eigen::Matrix<T, -1, 1> rhs(polynomial_degree + 1);
96
97 for (int i = 0; i < incr; i++) {
98 for (int j = 0; j < polynomial_degree + 1; j++) {
99 rhs[j] = values[i * (polynomial_degree + 1) + j];
100 }
101 Eigen::Matrix<T, -1, 1> tmp(polynomial_degree + 1);
102 tmp = im * rhs;
103
104 for (int j = 0; j < polynomial_degree + 1; j++) {
105 coefs[i * (polynomial_degree + 1) + j] = tmp(j);
106 }
107 }
108
109 return;
110 }
111
112 /**
113 * \ingroup Spline
114 * \brief this solves a generic interpolation problem.
115 **/
116 template <typename T>
117 inline std::vector<T> GetCoefficients(const int increments,
118 const std::vector<double> &mask,
119 const std::vector<T> &values) {
120 std::vector<double> out(increments * (mask.size()));
121 GetCoefficients<T>(increments, mask, values, out.data());
122 return out;
123 }
124 } // namespace Spl
125 } // namespace Bembel
126 #endif // BEMBEL_SRC_SPLINE_LOCALIZE_HPP_
127