Line | Branch | Exec | Source |
---|---|---|---|
1 | // This file is part of Bembel, the higher order C++ boundary element library. | ||
2 | // | ||
3 | // Copyright (C) 2022 see <http://www.bembel.eu> | ||
4 | // | ||
5 | // It was written as part of a cooperation of J. Doelz, H. Harbrecht, S. Kurz, | ||
6 | // M. Multerer, S. Schoeps, and F. Wolf at Technische Universitaet Darmstadt, | ||
7 | // Universitaet Basel, and Universita della Svizzera italiana, Lugano. This | ||
8 | // source code is subject to the GNU General Public License version 3 and | ||
9 | // provided WITHOUT ANY WARRANTY, see <http://www.bembel.eu> for further | ||
10 | // information. | ||
11 | #ifndef BEMBEL_SRC_SPLINE_LOCALIZE_HPP_ | ||
12 | #define BEMBEL_SRC_SPLINE_LOCALIZE_HPP_ | ||
13 | |||
14 | namespace Bembel { | ||
15 | |||
16 | /** | ||
17 | * \ingroup Spline | ||
18 | * \brief The Spl namespace is the backend for basis functions and B-Spline | ||
19 | * computations, and should not be used by the user in a boundary element code. | ||
20 | */ | ||
21 | namespace Spl { | ||
22 | // At first the a==0 and b==1 seems insane. However, this is the case quite | ||
23 | // often and actually shaves off a couple of % of runtime, since the comparison | ||
24 | // is cheaper than a division. | ||
25 | 199812368 | constexpr inline double Rescale(double x, double a, double b) noexcept { | |
26 |
4/4✓ Branch 0 taken 199812240 times.
✓ Branch 1 taken 128 times.
✓ Branch 2 taken 128 times.
✓ Branch 3 taken 199812112 times.
|
199812368 | return (a == 0 && b == 1) ? x : (x - a) / (b - a); |
27 | } | ||
28 | |||
29 | // We use equidistant points for our interpolation problems. This is not | ||
30 | // optimal, but works sufficiently well. | ||
31 | 261 | inline std::vector<double> MakeInterpolationMask( | |
32 | int polynomial_degree) noexcept { | ||
33 | 261 | std::vector<double> out(polynomial_degree); | |
34 | 261 | const double h = 1. / (polynomial_degree + 1); | |
35 |
2/2✓ Branch 0 taken 872 times.
✓ Branch 1 taken 261 times.
|
1133 | for (int i = 0; i < polynomial_degree; i++) { |
36 | 872 | out[i] = ((i + 1) * h); | |
37 | } | ||
38 | 261 | return out; | |
39 | } | ||
40 | |||
41 | /** | ||
42 | * \ingroup Spline | ||
43 | * \brief Creates a T-vector of equidistant itnerpolation points for a given | ||
44 | * knot vector without any repetitions. | ||
45 | **/ | ||
46 | template <typename T> | ||
47 | 2 | inline std::vector<T> MakeInterpolationPoints( | |
48 | const std::vector<T> &uniq, const std::vector<T> &mask) noexcept { | ||
49 | 2 | const int size = uniq.size(); | |
50 | 2 | std::vector<T> out; | |
51 | |||
52 | 2 | out.reserve((size - 1) * mask.size()); | |
53 | |||
54 |
2/2✓ Branch 0 taken 4 times.
✓ Branch 1 taken 2 times.
|
6 | for (int i = 0; i < size - 1; i++) { |
55 |
2/2✓ Branch 4 taken 8 times.
✓ Branch 5 taken 4 times.
|
12 | for (auto m : mask) { |
56 | 8 | out.push_back(uniq[i] + m * (uniq[i + 1] - uniq[i])); | |
57 | } | ||
58 | } | ||
59 | 2 | return out; | |
60 | } | ||
61 | |||
62 | /** | ||
63 | * \ingroup Spline | ||
64 | * \brief returns the coefficients to represent a function in the Bernstein | ||
65 | * basis on [0,1]. | ||
66 | **/ | ||
67 | inline Eigen::Matrix<double, -1, -1> GetInterpolationMatrix( | ||
68 | int polynomial_degree, const std::vector<double> &mask) { | ||
69 | Eigen::Matrix<double, -1, -1> interpolationMatrix(polynomial_degree + 1, | ||
70 | polynomial_degree + 1); | ||
71 | |||
72 | double val[Constants::MaxP + 1]; | ||
73 | for (int j = 0; j < polynomial_degree + 1; j++) { | ||
74 | Bembel::Basis::ShapeFunctionHandler::evalBasis(polynomial_degree, val, | ||
75 | mask[j]); | ||
76 | for (int i = 0; i < polynomial_degree + 1; i++) | ||
77 | interpolationMatrix(j, i) = val[i]; | ||
78 | } | ||
79 | |||
80 | return interpolationMatrix.inverse(); | ||
81 | } | ||
82 | |||
83 | /** | ||
84 | * \ingroup Spline | ||
85 | * \brief this solves a generic interpolation problem. | ||
86 | **/ | ||
87 | template <typename T> | ||
88 | inline void GetCoefficients(const int incr, const std::vector<double> &mask, | ||
89 | const std::vector<T> &values, T *coefs) { | ||
90 | int polynomial_degree = mask.size() - 1; | ||
91 | |||
92 | Eigen::Matrix<double, -1, -1> im = | ||
93 | GetInterpolationMatrix(polynomial_degree, mask); | ||
94 | |||
95 | Eigen::Matrix<T, -1, 1> rhs(polynomial_degree + 1); | ||
96 | |||
97 | for (int i = 0; i < incr; i++) { | ||
98 | for (int j = 0; j < polynomial_degree + 1; j++) { | ||
99 | rhs[j] = values[i * (polynomial_degree + 1) + j]; | ||
100 | } | ||
101 | Eigen::Matrix<T, -1, 1> tmp(polynomial_degree + 1); | ||
102 | tmp = im * rhs; | ||
103 | |||
104 | for (int j = 0; j < polynomial_degree + 1; j++) { | ||
105 | coefs[i * (polynomial_degree + 1) + j] = tmp(j); | ||
106 | } | ||
107 | } | ||
108 | |||
109 | return; | ||
110 | } | ||
111 | |||
112 | /** | ||
113 | * \ingroup Spline | ||
114 | * \brief this solves a generic interpolation problem. | ||
115 | **/ | ||
116 | template <typename T> | ||
117 | inline std::vector<T> GetCoefficients(const int increments, | ||
118 | const std::vector<double> &mask, | ||
119 | const std::vector<T> &values) { | ||
120 | std::vector<double> out(increments * (mask.size())); | ||
121 | GetCoefficients<T>(increments, mask, values, out.data()); | ||
122 | return out; | ||
123 | } | ||
124 | } // namespace Spl | ||
125 | } // namespace Bembel | ||
126 | #endif // BEMBEL_SRC_SPLINE_LOCALIZE_HPP_ | ||
127 |