| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | // This file is part of Bembel, the higher order C++ boundary element library. | ||
| 2 | // | ||
| 3 | // Copyright (C) 2022 see <http://www.bembel.eu> | ||
| 4 | // | ||
| 5 | // It was written as part of a cooperation of J. Doelz, H. Harbrecht, S. Kurz, | ||
| 6 | // M. Multerer, S. Schoeps, and F. Wolf at Technische Universitaet Darmstadt, | ||
| 7 | // Universitaet Basel, and Universita della Svizzera italiana, Lugano. This | ||
| 8 | // source code is subject to the GNU General Public License version 3 and | ||
| 9 | // provided WITHOUT ANY WARRANTY, see <http://www.bembel.eu> for further | ||
| 10 | // information. | ||
| 11 | #ifndef BEMBEL_SRC_SPLINE_BEZIEREXTRACTION_HPP_ | ||
| 12 | #define BEMBEL_SRC_SPLINE_BEZIEREXTRACTION_HPP_ | ||
| 13 | |||
| 14 | namespace Bembel { | ||
| 15 | namespace Spl { | ||
| 16 | |||
| 17 | /** | ||
| 18 | * \ingroup Spline | ||
| 19 | * \brief implements Bezier extraction via the solution of an interpolation | ||
| 20 | * problem. | ||
| 21 | */ | ||
| 22 | template <typename T> | ||
| 23 | 1 | Eigen::SparseMatrix<T> MakeProjection(const std::vector<T> &x_knots, | |
| 24 | const std::vector<T> &y_knots, | ||
| 25 | const std::vector<T> &x_unique_knots, | ||
| 26 | const std::vector<T> &y_unique_knots, | ||
| 27 | const int polynomial_degree_x, | ||
| 28 | const int polynomial_degree_y) noexcept { | ||
| 29 | // In here phi refers to the BIG bezier basis, and psi refers to the small | ||
| 30 | // B-Spline basis given by x_knots,y_knots and xp,yp. | ||
| 31 | // Sparse does weird things. We need not be that accurate, since the right | ||
| 32 | // coeefs will be >=.1 | ||
| 33 | 1 | constexpr double sparseTol = 0.001; | |
| 34 | // Number of functions in X,Y and total | ||
| 35 | 1 | const int size_phi_x = (x_unique_knots.size() - 1) * polynomial_degree_x; | |
| 36 | 1 | const int size_phi_y = (y_unique_knots.size() - 1) * polynomial_degree_y; | |
| 37 | 1 | const int size_phi = size_phi_x * size_phi_y; | |
| 38 | 1 | const int size_psi_x = x_knots.size() - polynomial_degree_x; | |
| 39 | 1 | const int size_psi_y = y_knots.size() - polynomial_degree_y; | |
| 40 | 1 | const int size_psi = size_psi_x * size_psi_y; | |
| 41 | |||
| 42 | // Interpolation points | ||
| 43 | 1 | const auto xmask = MakeInterpolationMask(polynomial_degree_x); | |
| 44 | 1 | const auto ymaks = MakeInterpolationMask(polynomial_degree_y); | |
| 45 | |||
| 46 | 1 | const auto xpoint = MakeInterpolationPoints(x_unique_knots, xmask); | |
| 47 | 1 | const auto ypoint = MakeInterpolationPoints(y_unique_knots, ymaks); | |
| 48 | |||
| 49 |
1/2✗ Branch 2 not taken.
✓ Branch 3 taken 1 times.
|
1 | assert(((int)(xmask.size() * (x_unique_knots.size() - 1))) == size_phi_x); |
| 50 |
1/2✗ Branch 1 not taken.
✓ Branch 2 taken 1 times.
|
1 | assert(((int)(xpoint.size())) == size_phi_x); |
| 51 |
1/2✗ Branch 1 not taken.
✓ Branch 2 taken 1 times.
|
1 | assert(((int)(ypoint.size())) == size_phi_y); |
| 52 | |||
| 53 | 1 | Eigen::Matrix<T, -1, -1> tempsolver = | |
| 54 | Eigen::Matrix<T, -1, -1>::Zero(size_phi, size_phi); | ||
| 55 | |||
| 56 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | double *coefficients_x = new double[polynomial_degree_x]; |
| 57 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | double *coefficients_y = new double[polynomial_degree_y]; |
| 58 | |||
| 59 |
2/2✓ Branch 0 taken 2 times.
✓ Branch 1 taken 1 times.
|
3 | for (int i = 0; i < polynomial_degree_x; i++) coefficients_x[i] = 0; |
| 60 | |||
| 61 |
2/2✓ Branch 0 taken 2 times.
✓ Branch 1 taken 1 times.
|
3 | for (int i = 0; i < polynomial_degree_y; i++) coefficients_y[i] = 0; |
| 62 | |||
| 63 | 512 | auto BezBasis = [](std::vector<double> uniq, int deg, int pos, double pt, | |
| 64 | double *coef) { | ||
| 65 | 512 | std::div_t loc = std::div(pos, deg); | |
| 66 |
6/6✓ Branch 1 taken 384 times.
✓ Branch 2 taken 128 times.
✓ Branch 4 taken 128 times.
✓ Branch 5 taken 256 times.
✓ Branch 6 taken 256 times.
✓ Branch 7 taken 256 times.
|
512 | if (pt > uniq[loc.quot + 1] || pt < uniq[loc.quot]) { |
| 67 | 256 | return 0.; | |
| 68 | } else { | ||
| 69 | 256 | coef[loc.rem] = 1; | |
| 70 |
1/2✓ Branch 2 taken 256 times.
✗ Branch 3 not taken.
|
256 | double out = Bembel::Basis::ShapeFunctionHandler::evalCoef( |
| 71 | 256 | deg - 1, coef, Rescale(pt, uniq[loc.quot], uniq[loc.quot + 1])); | |
| 72 | 256 | coef[loc.rem] = 0; | |
| 73 | 256 | return out; | |
| 74 | } | ||
| 75 | }; | ||
| 76 | |||
| 77 | // A matrix, each row corresponds to one tp-basisfunction, each col to one | ||
| 78 | // tp-interpolation point | ||
| 79 |
2/2✓ Branch 0 taken 4 times.
✓ Branch 1 taken 1 times.
|
5 | for (int iy = 0; iy < size_phi_y; iy++) { |
| 80 |
2/2✓ Branch 0 taken 16 times.
✓ Branch 1 taken 4 times.
|
20 | for (int ix = 0; ix < size_phi_x; ix++) { |
| 81 |
2/2✓ Branch 0 taken 64 times.
✓ Branch 1 taken 16 times.
|
80 | for (int y = 0; y < size_phi_y; y++) { |
| 82 |
2/2✓ Branch 0 taken 256 times.
✓ Branch 1 taken 64 times.
|
320 | for (int x = 0; x < size_phi_x; x++) { |
| 83 | 512 | tempsolver(y * size_phi_x + x, ix * size_phi_y + iy) = | |
| 84 | 512 | BezBasis(x_unique_knots, polynomial_degree_x, ix, xpoint[x], | |
| 85 | 256 | coefficients_x) * | |
| 86 | 256 | BezBasis(y_unique_knots, polynomial_degree_y, iy, ypoint[y], | |
| 87 | coefficients_y); | ||
| 88 | } | ||
| 89 | } | ||
| 90 | } | ||
| 91 | } | ||
| 92 | |||
| 93 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | delete[] coefficients_x; |
| 94 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | delete[] coefficients_y; |
| 95 | |||
| 96 | 1 | Eigen::FullPivLU<Eigen::Matrix<double, -1, -1>> lu_decomp(tempsolver); | |
| 97 |
1/2✗ Branch 1 not taken.
✓ Branch 2 taken 1 times.
|
1 | assert(lu_decomp.rank() == size_phi); |
| 98 | /// The inverse matrix, for the solition of the linear system to come. | ||
| 99 | 1 | Eigen::Matrix<T, -1, -1> solve = tempsolver.inverse(); | |
| 100 | |||
| 101 | 1 | Eigen::Matrix<T, -1, -1> Proj(size_phi, size_psi); | |
| 102 | 1 | Eigen::Matrix<T, -1, -1> unit = | |
| 103 | Eigen::Matrix<T, -1, -1>::Zero(size_psi_y, size_psi_x); | ||
| 104 | |||
| 105 | /// For each basisfunction phi_j solves for the right coeef such that \Sum | ||
| 106 |
2/2✓ Branch 0 taken 3 times.
✓ Branch 1 taken 1 times.
|
4 | for (int i = 0; i < size_psi_x; i++) |
| 107 |
2/2✓ Branch 0 taken 9 times.
✓ Branch 1 taken 3 times.
|
12 | for (int j = 0; j < size_psi_y; j++) { |
| 108 | 9 | unit(j, i) = 1.; | |
| 109 | 9 | Eigen::Matrix<T, -1, 1> smallBase = | |
| 110 | (Unroll(DeBoorTP(unit, x_knots, y_knots, xpoint, ypoint))); | ||
| 111 | 9 | Proj.col(i * size_psi_y + j) = (solve * smallBase).transpose(); | |
| 112 | 9 | unit(j, i) = 0.; | |
| 113 | } | ||
| 114 | |||
| 115 | 1 | return (Proj.sparseView()).pruned(sparseTol); | |
| 116 | 1 | } | |
| 117 | } // namespace Spl | ||
| 118 | } // namespace Bembel | ||
| 119 | #endif // BEMBEL_SRC_SPLINE_BEZIEREXTRACTION_HPP_ | ||
| 120 |